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Abstract—In the computation field domain based on finite
element methods, the choice of the mesh is an important step
to obtain an accurate solution. In order to evaluate the quality
of the mesh, a posteriori error estimators can be used. In this
paper we propose to analyze and compare two error estimators
for magnetostatic problems.

I. INTRODUCTION

In order to avoid too much computation error in the field
analysis based on finite element methods, numerical error
estimations are more and more used today.

Some of them are based on an a priori error analysis which
allows to evaluate the global error before the finite element
computation, depending on the exact solution regularity. The
others, based on a posteriori techniques, give in particular the
spatial error distribution which can be used in the remeshing
step, by computing estimators depending on the numerical
solution.

Many a posteriori error estimators are nowadays available.
Among them, some are based on the non-verification property
of equilibrium equations (for instance in magnetostatic, Am-
pere’s law and flux conservation [1]), and allow to provide very
sharp and global error bounds. Another one recently proposed
is based on the energy approach [2]. At last, residual based
error estimators that also give rise to local error estimations
can be considered [3, 4, 5, 6].

In this communication we propose to develop in the case of
magnetostatic problems in term of scalar and vector potentials
the residual based error estimators. These estimators will
be compared with the equilibrated estimator. To carry out
the comparison of all these estimators, a problem with an
analytical solution and the classical problem (Team Workshop
13) will be treated.

II. ERROR ESTIMATORS

A. Residual based error estimator

Let be u the exact solution of the problem and uh the
numerical solution, where h characterizes the mesh resolution.
Let us call ε the numerical error such that ε = ‖u − uh‖. It
can be shown that the error is bounded upper and below [4,
6]:

C1 η ≤ ε ≤ C2 η, (1)

where C1 and C2 are positive constants independent of u and
h. In this equation η represents the error estimator obtained

from the computation. This estimator can be expressed from :

η2 =
∑

T∈Th

η2
T , (2)

where Th is the set of the mesh elements and ηT the
local estimator in a given element, which depends on the
formulation used.

B. Scalar potential formulation
In the scalar potential formulation the magnetic field H can

be written under the form: H = Hs − grad Ω, where Hs

represents the source field and Ω the scalar potential. With
this formulation, using the finite element method we want to
solve the equation:

div (µ(Hs − grad Ω)) = 0, (3)

where µ represents the magnetic permittivity. Let be Ω the
exact solution and Ωh the numerical one. The error in scalar
potential formulation takes the form:

ε2
Ω =

∫

D

µ
∣∣grad(Ω− Ωh)

∣∣2 dζ. (4)

On the other hand, with the Ω-formulation the local residual
estimator in an element ηT can be written under the form [3]:

η2
T = η2

T ;1 + η2
F ;1 + η2

F ;2, (5)

where the different estimator contributions are defined by :

η2
T ;1 =

h2
T

µT
‖div (µHs)− div (µgrad Ω) ‖2L2(T )

η2
F ;1 =

∑

F∈Fint
h ∩∂T

hF

2µA
‖[µ(Hs − grad Ωh) · n]F ‖2L2(F )

η2
F ;2 =

∑

F∈Fh∩ΓB

hF

µT
‖µHs · n− µgrad Ωh · n‖2L2(F )

In these definitions, F int
h is the set of the internal facets of the

triangulation. hT represents the diameter of the smallest sphere
containing the element, µT the permeability in the element, hF

the diameter of the smallest circle containing the facet and µA

the maximal value of the permeability of the two elements
belonging to the facet. The unit normal to the facet is denoted
n, and [v]F denotes the jump of the quantity v through the
facet F . It can be noted that ηT ;1 can be equal to zero if
P1 element is used. ηF ;1 represents the conservation of the
magnetic field at the interface between two elements and ηF ;2

controls the boundary condition verification on ΓB.



C. Vector potential formulation

Using the vector potential formulation (A-formulation) the
magnetic flux density is expressed under the form B = curl A.
With this formulation the equation to solve takes the form:

curl
(
µ−1curl A

)
= Js, (6)

where Js represents the source current. Similarly to the scalar
potential formulation the error can be written under the form:

ε2
A =

∫

D

µ−1
∣∣curl (A− Ah)

∣∣2 dζ, (7)

and the local estimator in an element can be expressed by:

η2
T = η2

T ;1 + η2
F ;1, (8)

where the different estimator contributions are defined by :

η2
T ;1 = h2

T µT

∥∥Js − curl(
1
µ

curl Ah)
∥∥2

L2(T )

η2
F ;1 =

∑

F∈Fint
h ∩∂T

1
2
hF µA

∥∥[
n× 1

µ
curl Ah

]
F

∥∥2

L2(F )
.

In these relations, µA is the minimal value of the permeability
of the two elements belonging to the facet.

D. Error estimator of the equilibrium method

The error estimator based on the non-verification of the
constitutive relationship is also called equilibrated estimator.
To compute this estimator, it is necessary to compute two
admissible solutions which have to verify the equilibrium
equations (3) and (6) called Hh and Bh for respectively the Ω
and the A formulations. From both solutions it is possible to
evaluate the local error ηT using the next equation [1]:

η2
T = ‖Bh − µHh‖2L2(T ). (9)

III. NUMERICAL APPLICATIONS

To evaluate the efficiency of all proposed estimators, an
academic example based on an analytical solution is studied.
The structure is a cube of 1m3 crossed by a current density
of 107A/m2. The analytical solution knowledge allows to
evaluate the local exact error map for each formulation, and to
compare it to the map provided by the estimators computation.
In the same way a comparison between the global errors ε2

Ω

and ε2
A can be carried out. All error maps are displayed in

the middle of the cube in a transverse section with regard to
the current density direction. In Fig. 1 for the A-formulation
the exact error map (εA) Fig. 1(a) is compared with the error
map obtained from the residual estimator Fig. 1(d). For the Ω-
formulation the same comparison is carried out between the
exact error (εΩ) Fig. 1(b) and the residual error estimator Fig.
1(e). The Fig. 1(c) represents (ε2

A + ε2
Ω)1/2 that we compare

to the equilibrated estimator in its local formulation Fig. 1(f).
In order to extend the analysis of these estimators, the Team
Workshop 13 has been modeled. The mesh is presented in Fig
2(b). The Fig. 2(a) and Fig. 2(c) represent respectively the
residual estimator map (ηA) and equilibrated estimator map.
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Fig. 1. Local Error Maps

IV. CONCLUSION

In this communication an analysis of residual and equili-
brated estimators has been carried out in the case of magne-
tostatic formulations. Compared to the exact error, it is clear
that both of the residual estimators give an error map in very
good accordance with the actual error distribution, each of
them for the formulation it is associated with. So they can be
successively used for remeshing. The equilibrated estimator
gives the error map corresponding to an average value of the
errors obtained with the two formulations, and provides the
sharper upper bound for the global error [1]. Consequently,
the best approach will be to use residual estimators for the
local analysis of each formulation, and then the equilibrated
estimator to evaluate the global error when needed.
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